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Abstract:
Background:
Optimal pharmacological therapy for pulmonary arterial hypertension (PAH) remains unclear, as pathophysiological heterogeneity may affect
therapeutic outcomes. A ranking methodology based on pulmonary vascular genetic expression analysis could assist in medication selection and
potentially lead to improved prognosis.

Objective:
To describe a bioinformatics approach for ranking currently approved pulmonary arterial antihypertensive agents based on gene expression data
derived from percutaneous endoarterial biopsies in an animal model of pulmonary hypertension.

Methods:
We created a chronic PAH model in Micro Yucatan female swine by surgical anastomosis of the left pulmonary artery to the descending aorta. A
baseline catheterization, angiography and pulmonary endoarterial biopsy were performed. We obtained pulmonary vascular biopsy samples by
passing a biopsy catheter through a long 8 French sheath, introduced via the carotid artery, into 2- to 3-mm peripheral pulmonary arteries. Serial
procedures were performed on days 7, 21, 60, and 180 after surgical anastomosis. RNA microarray studies were performed on the biopsy samples.

Results:
Utilizing the medical literature, we developed a list of PAH therapeutic agents, along with a tabulation of genes affected by these agents. The effect
on gene expression from pharmacogenomic interactions was used to rank PAH medications at each time point. The ranking process allowed the
identification of a theoretical optimum three-medication regimen.

Conclusion:
We  describe  a  new  potential  paradigm  in  the  therapy  for  PAH,  which  would  include  endoarterial  biopsy,  molecular  analysis  and  tailored
pharmacological therapy for patients with PAH.
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1. INTRODUCTION
Pulmonary arterial hypertension (PAH) is accompanied by

significant morbidity and mortality [1, 2]. Currently approved
PAH therapeutic agents mainly target three molecular path-
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ways  [3];  nevertheless,  evidence-based  methodologies  for
individualizing  therapy  are  lacking.  A  method  for  guiding
therapy  could  be  based  on  the  identification  of  specific
pulmonary vascular genetic dysregulation in patients with PAH
[4], coupled with pharmacogenomic interaction data between
pulmonary  arterial  antihypertensive  agents  and  pulmonary
vascular  dysregulated  genes.  We  describe  a  bioinformatics
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approach  for  ranking  currently  approved  pulmonary  arterial
antihypertensive agents based on gene expression data derived
from percutaneous endoarterial biopsies in an animal model of
pulmonary hypertension.

2. METHODS

Chronic  PAH  was  created  in  4  Micro  Yucatan  female
swine  by  surgical  anastomosis  of  the  left  pulmonary  artery
(LPA) to the descending aorta [5]. The mean body weight was
22.4  ±  5.3  kg,  and  the  mean  age  at  surgery  was  7.3  ±  2.7
months.  An  institutional  animal  research  committee  at  the
University  of  Nevada  Las  Vegas  approved  the  protocol.
Anesthesia was induced and maintained with inhaled isoflurane
(Baxter  Healthcare  Co.  Deer  Field,  IL,  USA)  as  described
previously  [5].  A baseline  right-sided  cardiac  catheterization
with pulmonary angiography was performed through a sheath
in  the  right  internal  jugular  vein.  The  biopsy  procedure  was
performed as described previously [6, 7]. To obtain biopsies,
an  8F  long  sheath  was  wedged  in  2-  to  3-mm  peripheral
pulmonary  arteries.  At  each  procedure,  two  samples  were
obtained  for  RNA  analysis.  Catheterization  with  aortic  and
pulmonary  artery  pressure  measurement,  angiography,  and
endoarterial  biopsies was performed through an 8F sheath in
the  carotid  artery  at  days  7,  21,  60,  and  180  after  surgery.
Briefly, the biopsy catheter was advanced through the delivery
sheath into the distal vessel. The biopsy catheter was changed
from closed to open configuration, exposing a window in the
distal steel end of the internal tube. The vacuum was turned on.
The trigger in the biopsy catheter was activated, resulting in the
outer tube of the biopsy catheter advancing over the inner tube,
cutting the tissue sample. The catheter was removed from the
sheath and the biopsy piece was retrieved. Angiograms in distal
pulmonary  artery  branches  were  performed  before  and  after
biopsy.  To  create  the  shunt  model,  a  left  thoracotomy  was
performed in the fourth intercostal space. The LPA was ligated
at its origin from the pulmonary trunk. The descending thoracic
aorta  was  clamped,  and  a  window  was  created  in  its  medial
aspect with a 4.5 mm punch. An end-to-side anastomosis was
created.  The  chest  was  closed.  No  chest  tubes  were  placed.
Postoperative care was as described previously [5]. Pulmonary
arterial pressures were normal in the early biopsy time points
and at near systemic level on day 180 [5]. Pulmonary arterial
mural  changes  included  progressive  neo-intimal  formation,
endothelial  abnormalities  and  medial  thickening  as  the  PAH
advanced;  findings  consistent  with  significant  PAH  and
described  in  one  of  our  previous  publications  [5].  Animals
were anesthetized and intubated for each procedure, allowed to
recover,  and  re-instrumented  for  repeat  procedures  until  day
180,  when they were  euthanized and subjected to  pathologic
analysis  [5].  For  RNA  microarray  analysis,  biopsy  samples
were  placed  in  RNAlater™  and  analyzed  by  GeneChip®

Porcine  Genome  Array,  Thermo  Fisher  Scientific,  which
provides  comprehensive  coverage  of  the  Sus  scrofa
transcriptome, containing 23,937 probe sets for 20,201 genes.
The sequence information was  selected from UniGene Build
28, GenBank® mRNAs, and GenBank® porcine mitochondrial
and  rRNA  sequences.  Specimens  were  homogenized  using
QIAshredder columns in a FastPrep FP120 Homogenizer. RNA
was  isolated  using  RNeasy  Mini  columns  and  quantified

initially  by  UV  spectrophotometry  and  more  definitively  by
capillary electrophoresis on an Agilent 2100 Bioanalyzer.

A  list  of  drugs  approved  for  the  treatment  of  PAH were
compiled.  A  literature  review  of  the  genes  affected  by
treatment with each individual PAH drug was conducted, and a
set  of  PAH drug  target  genes  was  created.  This  set  of  genes
associated with specific PAH drugs was cross-referenced with
data  generated  from  the  GeneChip®  Porcine  Genome  Array.
From these data sets, a new set of genes was generated: Genes
affected by PAH drugs for which quantitative information from
the  GeneChip®  Porcine  Genome  Array  was  available.  A
literature  review  of  the  PAH  drug-associated  genes  was
conducted to identify which genes were clinically relevant in
the pathology of PAH. A final list of genes was generated. The
specific  drugs  chosen  for  the  ranking  method  were  included
based  on  available  gene  data  from  the  GeneChip®  Porcine
Genome Array.

For each affected gene, the fold change in expression from
baseline  was  calculated  on  days  7,  21,  60,  and  180  post-
surgery,  based  on  data  derived  from  the  GeneChip®  Porcine
Genome Array. To determine drug scores, the fold change of
each  affected  gene  was  then  multiplied  by  an  “alignment
factor”  of  -1  if  the  drug-gene  interaction  followed  gene
expression  associated  with  pathology  or  if  the  drug-gene
interaction  reduced  expression  of  a  gene  known  to  be
upregulated  as  a  compensatory  mechanism  to  alleviate
pathology (such as upregulation of prostaglandin synthase), or
+1 if  the drug-gene interaction counteracted gene expression
associated with pathology or upregulated compensatory genes.
The final score for a drug at a given time point was calculated
by averaging the modified fold changes for all affected genes
known  to  interact  with  the  drug  of  interest.  The  calculated
scores  then  determined  the  final  rankings  of  the  drugs,  with
higher  scores  indicating  larger  magnitudes  of  drug-gene
interactions that counteracted gene expression associated with
pathology. The equation used for calculating scores, a modified
mean, is shown below:

where St is the drug’s score on day t, n is the total number
of  genes  affected  by  the  drug  for  which  data  were  available
(derived from Table 2),  mi  is  the alignment factor of  -1 or 1
associated with the drug’s effect on the expression of gene i,
xi,t is the raw gene expression of gene i on day t, and xi,b is the
baseline gene expression of gene i.

3. RESULTS

We examined  the  Food  and  Drug  Administration  (FDA)
approved  PAH  therapeutic  agents;  however,  we  limited  the
analysis to 6 medications that had sufficient associated genetic
expression  data:  ambrisentan,  bosentan,  iloprost,  macitentan,
sildenafil and treprostinil.  Table 1  lists genes identified from
the literature and the porcine genome array, relevant to PAH
pathology and affected by the therapeutic agents. For each of
the therapeutic agents, the gene-expression fold change at each
of the four data acquisition periods (not shown) was utilized to
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rank the therapeutic agent at the specific time points. Table 2
reveals the calculated rank scores for all six PAH medications,
derived  from  GeneChip®  Porcine  Genome  Array  gene
expression  data.  As  an  example  from  Table  2,  based  on  the

ranking  of  ambrisentan,  along  with  the  other  two  endothelin
receptor  antagonists  (bosentan  and  macitentan),  macitentan
would be the preferred choice on day 21; whereas ambrisentan
would be the preferred choice at day 180.

Table 1. Genes clinically relevant to PAH affected by a specific PAH drug and the effect of the drug on the gene.

Drug Gene Name/Ref Gene ID Mechanism of Action/Ref
Ambrisentan C-C Motif Chemokine Ligand 19 [13] CCL19 Inhibitor [14]

C-C Motif Chemokine Ligand 2 [14 - 17] CCL2 Inhibitor [14]
C-C Motif Chemokine Ligand 5 [18, 19] CCL5 Inhibitor [14]

Endothelin 1 [20 - 22] EDN1 Inhibitor [20]
Endothelin Receptor Type A [20, 21, 23] EDNRA Inhibitor [20, 24]

Interleukin 6 [14, 24, 25] IL6 Inhibitor [14]
Nitric Oxide Synthase 3 [20] NOS3 Inducer [20]

Bosentan C-C Motif Chemokine Ligand 19 [13] CCL19 Inhibitor [14]
C-C Motif Chemokine Ligand 2 [15 - 17] CCL2 Inhibitor [14]
C-C Motif Chemokine Ligand 5 [18, 19] CCL5 Inhibitor [14]
Collagen Type I Alpha 1 Chain [20 - 28] COL1A1 Inhibitor [26]

Endothelin 1 [20 - 22] EDN1 Inhibitor [21]
Endothelin Receptor Type A [20, 21, 23] EDNRA Inhibitor [21]

Endothelin Receptor Type B [13, 29] EDNRB Inhibitor [30]
Fibronectin 1 [26] FN1 Inhibitor [26, 31]

Follistatin [26] FST Inhibitor [26]
Interleukin 6 [25] IL6 Inhibitor [14, 32]
Galectin 3 [26] LGALS3 Inhibitor [26]

Inhibin Subunit Beta A [26] INHBA Inhibitor [26]
Matrix Metallopeptidase 2 [33, 34] MMP2 Inhibitor [34]

Natriuretic Peptide A [26] NPPA Inhibitor [26]
Natriuretic Peptide B [26] NPPB Inhibitor [26]

Prostaglandin I2 Synthase [35] PGIS Inhibitor [35]
TIMP Metallopeptidase Inhibitor 1 [26, 34] TIMP1 Inhibitor [26, 34]

Macitentan Collagen Type I Alpha 1 Chain [26 - 28] COL1A1 Inhibitor [26]
Endothelin Receptor Type A [20, 21, 23] EDNRA Inhibitor [36, 37]

Endothelin Receptor Type B [23, 29] EDNRB Inhibitor [36, 37]
Fibronectin 1 [26] FN1 Inhibitor [26]

Follistatin [26] FST Inhibitor [26]
Galectin 3 [26] LGALS3 Inhibitor [26]

Inhibin Subunit Beta A [26] INHBA Inhibitor [26]
Matrix Metallopeptidase 2 [33, 34] MMP2 Inhibitor [33]

Matrix Metallopeptidase 9 [33] MMP9 Inhibitor [33]
Natriuretic Peptide A [26] NPPA Inhibitor [26]
Natriuretic Peptide B [26] NPPB Inhibitor [26]

TIMP Metallopeptidase Inhibitor 1 [26, 34] TIMP1 Inhibitor [26]
Sildenafil Angiopoietin 1 [38] ANGPT1 Inhibitor [38]

Angiotensin II Receptor Type 1 [38] AT-1 Inhibitor [38]
Angiotensin II Receptor Type 2 [38] AT-2 Inhibitor [38]

Endothelin 1 [20 - 22] EDN1 Inhibitor [38]
Endothelin Converting Enzyme 1 [25] ECE1 Inhibitor [38]

Endothelin Receptor Type B [38] EDNRB Inhibitor [38]
Nitric Oxide Synthase 2 [38] NOS2 Inhibitor [38]
Nitric Oxide Synthase 3 [38] NOS3 Inhibitor [38]
Phosphodiesterase 5A [38] PDE5A Inhibitor [38]

Vascular Endothelial Growth Factor A [32, 38] VEGFA Inhibitor [38]
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Drug Gene Name/Ref Gene ID Mechanism of Action/Ref
Iloprost Collagen Type I Alpha 1 Chain [26 - 28] COL1A1 Inhibitor [28]

Collagen Type 3 Alpha 1 Chain [27, 28] COL3A1 Inhibitor [28]
Cellular Commun. Network Factor 2 [28] CCN2/CTGF Inhibitor [28]

Inhibitor of DNA Binding 1 [39] ID1 Inducer [39]
Interleukin 6 [32] IL6 Inhibitor [40]

Matrix Metallopeptidase 9 [33] MMP9 Inducer [28]
Transforming Growth Factor Beta 1 [36, 41, 42] TGFB1 Inhibitor [42]

Tumor Necrosis Factor [32] TNF Inhibitor [40]
Treprostinil Collagen Type I Alpha 1 Chain [26 - 28] COL1A1 Inhibitor [27, 41]

Collagen Type III Alpha 1 Chain [27, 28] COL3A1 Inhibitor [27]
Fibronectin 1 [26] FN1 Inhibitor [41]

Inhibitor of DNA Binding 1 [39] ID1 Inducer [39]
Interleukin 6 [32] IL6 Inhibitor [40]

Peroxisome Prolif. Activated Receptor Alpha [43] PPARA Inducer [43]
Peroxisome Prolif. Activated Receptor Delta [44] PPARD Inducer [44]
Peroxisome Prolif. Activ. Receptor Gamma [45] PPARG Inducer [46]

TIMP Metallopeptidase Inhibitor 1 [28, 47] TIMP1 Inhibitor [47]
Transforming Growth Factor Beta 1 [41, 42, 47] TGFB1 Inhibitor [41, 47]

Tumor Necrosis Factor [32] TNF Inhibitor [40]

Table 2. Calculated rank scores for all six PAH medications, derived from GeneChip® porcine genome array gene expression
data.

Drug Category Day 7 Score Day 21 Score Day 60 Score Day 180 Score
Ambrisentan Endothelin Receptor Antagonist 0.55 1.03 1.55 9.25

Bosentan Endothelin Receptor Antagonist 1.00 1.16 0.34 4.78
Macitentan Endothelin Receptor Antagonist 1.04 1.73 -0.02 1.58
Sildenafil Phosphodiesterase 5 Inhibitor 1.72 5.33 3.33 19.30
Iloprost Prostacyclin 1.13 0.59 1.17 0.68

Treprostinil Prostacyclin 1.28 2.02 1.10 1.27

Fig. (1). Scores of the six drugs tested in the four time-points.

(Table 1) contd.....
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The  ranked  calculated  scores,  for  all  agents  from  all
experimental time periods, are shown in Table 2 and Fig. (1).
The prostacyclins, treprostinil and iloprost had similar rankings
on days 7 and 60; however, treprostinil had higher rankings on
days 21 and 180. Sildenafil was the only phosphodiesterase 5
inhibitor  analyzed,  and  it  ranked  high  on  day  180.  Table  3
demonstrates  the  highest-scoring  triple  therapy  at  each  time
point, based on the scores from Table 2.

Table  3.  Optimal  triple  therapy  regimen,  based  on  the
highest  score  for  each  time  point.

Day Prostacyclin PDE5 Inhibitor ERA
7 Treprostinil Sildenafil Macitentan
21 Treprostinil Sildenafil Macitentan
60 Iloprost Sildenafil Ambrisentan
180 Treprostinil Sildenafil Ambrisentan

4. DISCUSSION

Despite  advancements  in  PAH  pharmacological  therapy,
long-term  outcomes  remain  suboptimal  [8].  FDA  approved
medications  primarily  target  three  molecular  pathways  [3].
Additional agents are under investigation, with some designed
to  affect  alternative  molecular  pathways  [3,  4].  Further,
multiple  genes are  dysregulated in PAH [3,  4],  coupled with
the  complexity  of  temporally  related  specific  gene
dysregulations  over  the  course  of  PAH  [9].  Currently,
pharmacological therapy comprises a regimen of a combination
of agents.  often lacking specific  evidence-based guidance.  A
method to  assess  pathological  gene  dysregulations  over  time
along  with  associated  pharmacogenomic  interactions  of
selected  medications  might  allow  for  tailored  therapy.

In  this  manuscript,  our  aim  was  to  describe  a  new
paradigm in the therapy of PAH, which consists of three parts.
The first part is to obtain a biopsy of pulmonary arterial wall.
The second part entails performing molecular analysis on the
biopsy piece. We chose to use a porcine gene chip microarray
for  our  study  because  it  matched  out  model;  however,  other
techniques, such as RNA-Seq could have been used and would
be  more  desirable  in  human  studies.  The  third  part  of  our
method  consists  of  ranking  medications  (in  this  case,  ones
approved for the treatment of PAH) to identify individual drugs
or combinations of drugs that could be used to target molecular
dysregulation.

Past  studies  have  investigated  findings  of  gene
dysregulation  in  PAH  patients  through  analysis  of  fresh
peripheral  blood  mononuclear  cells  or  whole  blood  samples
[10].  Nevertheless,  an  analysis  based  on pulmonary  vascular
tissue  would  be  preferable.  Although  not  yet  clinically
available,  we  previously  demonstrated  that  pulmonary
endoarterial tissue can be obtained successfully and safely in
experimental  animal  models  [5  -  7,  9].  Currently,  guided
therapy  via  ranking  gene  dysregulation  has  a  role  in  the
selection  of  therapeutic  agents  for  neoplasms  [11,  12].

The  use  of  combination  therapy  is  now  considered  the
standard  of  care  in  the  treatment  of  PAH.  Maximal  therapy
consists of an agent each affecting the nitric oxide, endothelin
and  prostacyclin  pathways.  In  our  study,  the  analysis  of
optimal  triple  therapy  revealed  differences  in  the  choice  of

drug, which depended on the time point in the progression of
PAH that was tested. This optimal therapy remains theoretical
because  we  did  not  test  it  in  an  animal  model.  In  addition,
knowledge  about  whether  drugs  in  the  same  class  cause
identical,  similar  or  different  effects  on  gene  expression
remains  incomplete.  Nonetheless,  we  speculate  that  patients
will  also  have  different  molecular  pathways  expressed  at
different  “stages”  of  their  disease,  requiring  different  drug
combinations.  Logically,  as  more  molecular  pathways
associated  with  PAH are  discovered,  the  analysis  would  add
drugs  that  are  known  to  affect  those  pathways.  This  could
include drugs that are currently approved or utilized in other
diseases.  Therefore,  analysis  of  genetic  changes  on  the
pulmonary  arterial  biopsy  samples  has  the  potential  of
optimizing  individualized  PAH  combination  therapy.  We
intend  to  extend  this  proof  of  concept  to  guide  medical
management  of  PAH  patients  using  this  biopsy-based
bioinformatics  drug  ranking  method.

This  study  has  several  limitations.  We  used  only  female
Micro Yucatan pigs for ease of animal care and their genetic
dysregulation in the arterial wall may be different from males
or from other species. Our main aim in this study was more to
describe a methodology, rather than the preferred way to target
the molecular abnormalities in PAH. The endoarterial biopsy
technique  obtained  samples  from  2-3  mm  distal  pulmonary
arteries; however, it is unclear that gene dysregulation findings
in the biopsied distal pulmonary arteries are similar throughout
the  pulmonary  vasculature.  Further,  the  principal  target  of
prostacyclins,  prostacyclin  receptors  (PTGIR/PGI2/IP),  were
not  included  in  the  analysis  due  to  a  lack  of  prostacyclin-
related  gene  data  in  the  GeneChip®  Porcine  Genome  Array.
The resulting lack of data likely had a significant effect on the
rankings  of  the  prostacyclin  family  of  drugs.  Moreover,  the
ranking  ethodology  relied  on  reports  of  dysregulated  genes
from animal or in vitro PAH models that analyzed pulmonary
tissue  or  cultured  pulmonary  cells,  rather  than  endoarterial
biopsy tissue. Additionally, we did not utilize data from human
pharmacogenomic studies that included dysregulated genes that
were not part of our analysis. To account for potential biases in
favor of agents more extensively studied than others, we used a
mean  score  for  all  genes  associated  with  a  particular
medication in the ranking methodology. Finally, our analysis
was limited to 6 drugs. Other FDA-approved PAH medications
were not  included due to a  lack of  target  gene data from the
GeneChip® Porcine Genome Array.

CONCLUSION

In conclusion, this study demonstrates a new methodology
for PAH therapy. It combines a pulmonary endoarterial biopsy
technique with pulmonary vascular genetic expression studies
to  generate  a  therapeutic  agent  ranking  system  upon  which
tailored PAH therapy might be based. The optimal molecular
testing technique remains to be determined. Human studies will
be necessary to demonstrate the utility of this approach.
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